133 research outputs found

    Systematic review of communication technologies to promote access and engagement of young people with diabetes into healthcare

    Get PDF
    Background: Research has investigated whether communication technologies (e.g. mobile telephony, forums, email) can be used to transfer digital information between healthcare professionals and young people who live with diabetes. The systematic review evaluates the effectiveness and impact of these technologies on communication. Methods: Nine electronic databases were searched. Technologies were described and a narrative synthesis of all studies was undertaken. Results: Of 20,925 publications identified, 19 met the inclusion criteria, with 18 technologies assessed. Five categories of communication technologies were identified: video-and tele-conferencing (n = 2); mobile telephony (n = 3); telephone support (n = 3); novel electronic communication devices for transferring clinical information (n = 10); and web-based discussion boards (n = 1). Ten studies showed a positive improvement in HbA1c following the intervention with four studies reporting detrimental increases in HbA1c levels. In fifteen studies communication technologies increased the frequency of contact between patient and healthcare professional. Findings were inconsistent of an association between improvements in HbA1c and increased contact. Limited evidence was available concerning behavioural and care coordination outcomes, although improvement in quality of life, patientcaregiver interaction, self-care and metabolic transmission were reported for some communication technologies. Conclusions: The breadth of study design and types of technologies reported make the magnitude of benefit and their effects on health difficult to determine. While communication technologies may increase the frequency of contact between patient and health care professional, it remains unclear whether this results in improved outcomes and is often the basis of the intervention itself. Further research is needed to explore the effectiveness and cost effectiveness of increasing the use of communication technologies between young people and healthcare professionals

    Diagnostic and mechanistic implications of serum free light chains, albumin and alpha-fetoprotein in hepatocellular carcinoma

    Get PDF
    Background: Mass spectroscopy analysis suggested low serum albumin and high immunoglobulin free light chain (sFLC) levels may have diagnostic value in hepatocellular carcinoma (HCC). Our aims were to apply quantitative assays to confirm these observations, determine their diagnostic utility, and investigate the mechanisms involved. Methods: Albumin, sFLC, routine liver and renal function tests were measured in patients with chronic liver disease with (n=102) and without (n=113) HCC. The discriminant performance was compared with the current standard serological test alpha-fetoprotein (AFP) using receiver operating characteristic (ROC) and area under the curve (AUC) analyses. Results: sFLC and serum albumin were each confirmed to have discriminatory utility in HCC with AUC values of 0.7 and 0.8, respectively. sFLC were strongly correlated with gammaglobulin levels and both these were inversely related to serum albumin levels. The discriminatory utility of sFLC was retained after adjusting for renal and liver function. Conclusions: Serum levels of sFLC and albumin were strongly associated with HCC as predicted by mass spectroscopy. Discrimination of HCC by AFP was improved by the addition of either albumin or sFLC. Larger prospective studies are required to determine how AFP, sFLC and albumin might be combined in a useful diagnostic approach for HCC

    Examining the impact of 11 long-standing health conditions on health-related quality of life using the EQ-5D in a general population sample

    Get PDF
    Objectives Health-related quality of life (HRQoL) measures have been increasingly used in economic evaluations for policy guidance. We investigate the impact of 11 self-reported long-standing health conditions on HRQoL using the EQ-5D in a UK sample. Methods We used data from 13,955 patients in the South Yorkshire Cohort study collected between 2010 and 2012 containing the EQ-5D, a preference-based measure. Ordinary least squares (OLS), Tobit and two-part regression analyses were undertaken to estimate the impact of 11 long-standing health conditions on HRQoL at the individual level. Results The results varied significantly with the regression models employed. In the OLS and Tobit models, pain had the largest negative impact on HRQoL, followed by depression, osteoarthritis and anxiety/nerves, after controlling for all other conditions and sociodemographic characteristics. The magnitude of coefficients was higher in the Tobit model than in the OLS model. In the two-part model, these four long-standing health conditions were statistically significant, but the magnitude of coefficients decreased significantly compared to that in the OLS and Tobit models and was ranked from pain followed by depression, anxiety/nerves and osteoarthritis. Conclusions Pain, depression, osteoarthritis and anxiety/nerves are associated with the greatest losses of HRQoL in the UK population. The estimates presented in this article should be used to inform economic evaluations when assessing health care interventions, though improvements can be made in terms of diagnostic information and obtaining longitudinal data

    Glutamate mediated metabolic neutralization mitigates propionate toxicity in intracellular Mycobacterium tuberculosis

    Get PDF
    Metabolic networks in biological systems are interconnected, such that malfunctioning parts can be corrected by other parts within the network, a process termed adaptive metabolism. Unlike Bacillus Calmette-Guérin (BCG), Mycobacterium tuberculosis (Mtb) better manages its intracellular lifestyle by executing adaptive metabolism. Here, we used metabolomics and identified glutamate synthase (GltB/D) that converts glutamine to glutamate (Q → E) as a metabolic effort used to neutralize cytoplasmic pH that is acidified while consuming host propionate carbon through the methylcitrate cycle (MCC). Methylisocitrate lyase, the last step of the MCC, is intrinsically downregulated in BCG, leading to obstruction of carbon flux toward central carbon metabolism, accumulation of MCC intermediates, and interference with GltB/D mediated neutralizing activity against propionate toxicity. Indeed, vitamin B12 mediated bypass MCC and additional supplement of glutamate led to selectively correct the phenotypic attenuation in BCG and restore the adaptive capacity of BCG to the similar level of Mtb phenotype. Collectively, a defective crosstalk between MCC and Q → E contributes to attenuation of intracellular BCG. Furthermore, GltB/D inhibition enhances the level of propionate toxicity in Mtb. Thus, these findings revealed a new adaptive metabolism and propose GltB/D as a synergistic target to improve the antimicrobial outcomes of MCC inhibition in Mtb

    Clinical outcomes resulting from telemedicine interventions: a systematic review

    Get PDF
    BACKGROUND: The use of telemedicine is growing, but its efficacy for achieving comparable or improved clinical outcomes has not been established in many medical specialties. The objective of this systematic review was to evaluate the efficacy of telemedicine interventions for health outcomes in two classes of application: home-based and office/hospital-based. METHODS: Data sources for the study included deports of studies from the MEDLINE, EMBASE, CINAHL, and HealthSTAR databases; searching of bibliographies of review and other articles; and consultation of printed resources as well as investigators in the field. We included studies that were relevant to at least one of the two classes of telemedicine and addressed the assessment of efficacy for clinical outcomes with data of reported results. We excluded studies where the service did not historically require face-to-face encounters (e.g., radiology or pathology diagnosis). All included articles were abstracted and graded for quality and direction of the evidence. RESULTS: A total of 25 articles met inclusion criteria and were assessed. The strongest evidence for the efficacy of telemedicine in clinical outcomes comes from home-based telemedicine in the areas of chronic disease management, hypertension, and AIDS. The value of home glucose monitoring in diabetes mellitus is conflicting. There is also reasonable evidence that telemedicine is comparable to face-to-face care in emergency medicine and is beneficial in surgical and neonatal intensive care units as well as patient transfer in neurosurgery. CONCLUSIONS: Despite the widespread use of telemedicine in virtually all major areas of health care, evidence concerning the benefits of its use exists in only a small number of them. Further randomized controlled trials must be done to determine where its use is most effective

    High-Resolution Phenotypic Profiling Defines Genes Essential for Mycobacterial Growth and Cholesterol Catabolism

    Get PDF
    The pathways that comprise cellular metabolism are highly interconnected, and alterations in individual enzymes can have far-reaching effects. As a result, global profiling methods that measure gene expression are of limited value in predicting how the loss of an individual function will affect the cell. In this work, we employed a new method of global phenotypic profiling to directly define the genes required for the growth of Mycobacterium tuberculosis. A combination of high-density mutagenesis and deep-sequencing was used to characterize the composition of complex mutant libraries exposed to different conditions. This allowed the unambiguous identification of the genes that are essential for Mtb to grow in vitro, and proved to be a significant improvement over previous approaches. To further explore functions that are required for persistence in the host, we defined the pathways necessary for the utilization of cholesterol, a critical carbon source during infection. Few of the genes we identified had previously been implicated in this adaptation by transcriptional profiling, and only a fraction were encoded in the chromosomal region known to encode sterol catabolic functions. These genes comprise an unexpectedly large percentage of those previously shown to be required for bacterial growth in mouse tissue. Thus, this single nutritional change accounts for a significant fraction of the adaption to the host. This work provides the most comprehensive genetic characterization of a sterol catabolic pathway to date, suggests putative roles for uncharacterized virulence genes, and precisely maps genes encoding potential drug targets

    The consequences of delaying insulin initiation in UK type 2 diabetes patients failing oral hyperglycaemic agents: a modelling study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent data have shown that type 2 diabetes patients in the UK delay initiating insulin on average for over 11 years after first being prescribed an oral medication. Using a published computer simulation model of diabetes we used UK-specific data to estimate the clinical consequences of immediately initiating insulin versus delaying initiation for periods in line with published estimates.</p> <p>Methods</p> <p>In the base case scenario simulated patients, with characteristics based on published UK data, were modelled as either initiating insulin immediately or delaying for 8 years. Clinical outcomes in terms of both life expectancy and quality-adjusted life expectancy and also diabetes-related complications (cumulative incidence and time to onset) were projected over a 35 year time horizon. Treatment effects associated with insulin use were taken from published studies and sensitivity analyses were performed around time to initiation of insulin, insulin efficacies and hypoglycaemia utilities.</p> <p>Results</p> <p>For patients immediately initiating insulin there were increases in (undiscounted) life expectancy of 0.61 years and quality-adjusted life expectancy of 0.34 quality-adjusted life years versus delaying initiation for 8 years. There were also substantial reductions in cumulative incidence and time to onset of all diabetes-related complications with immediate versus delayed insulin initiation. Sensitivity analyses showed that a reduced delay in insulin initiation or change in insulin efficacy still demonstrated clinical benefits for immediate versus delayed initiation.</p> <p>Conclusion</p> <p>UK type 2 diabetes patients are at increased risk of a large number of diabetes-related complications due to an unnecessary delay in insulin initiation. Despite clear guidelines recommending tight glycaemic control this failure to begin insulin therapy promptly is likely to result in needlessly reduced life expectancy and compromised quality of life.</p

    Differential Producibility Analysis (DPA) of Transcriptomic Data with Metabolic Networks: Deconstructing the Metabolic Response of M. tuberculosis

    Get PDF
    A general paucity of knowledge about the metabolic state of Mycobacterium tuberculosis within the host environment is a major factor impeding development of novel drugs against tuberculosis. Current experimental methods do not allow direct determination of the global metabolic state of a bacterial pathogen in vivo, but the transcriptional activity of all encoded genes has been investigated in numerous microarray studies. We describe a novel algorithm, Differential Producibility Analysis (DPA) that uses a metabolic network to extract metabolic signals from transcriptome data. The method utilizes Flux Balance Analysis (FBA) to identify the set of genes that affect the ability to produce each metabolite in the network. Subsequently, Rank Product Analysis is used to identify those metabolites predicted to be most affected by a transcriptional signal. We first apply DPA to investigate the metabolic response of E. coli to both anaerobic growth and inactivation of the FNR global regulator. DPA successfully extracts metabolic signals that correspond to experimental data and provides novel metabolic insights. We next apply DPA to investigate the metabolic response of M. tuberculosis to the macrophage environment, human sputum and a range of in vitro environmental perturbations. The analysis revealed a previously unrecognized feature of the response of M. tuberculosis to the macrophage environment: a down-regulation of genes influencing metabolites in central metabolism and concomitant up-regulation of genes that influence synthesis of cell wall components and virulence factors. DPA suggests that a significant feature of the response of the tubercle bacillus to the intracellular environment is a channeling of resources towards remodeling of its cell envelope, possibly in preparation for attack by host defenses. DPA may be used to unravel the mechanisms of virulence and persistence of M. tuberculosis and other pathogens and may have general application for extracting metabolic signals from other “-omics” data

    Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection

    Get PDF
    Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes. © 2014 Gouzy et al

    Fumarate Reductase Activity Maintains an Energized Membrane in Anaerobic Mycobacterium tuberculosis

    Get PDF
    Oxygen depletion of Mycobacterium tuberculosis engages the DosR regulon that coordinates an overall down-regulation of metabolism while up-regulating specific genes involved in respiration and central metabolism. We have developed a chemostat model of M. tuberculosis where growth rate was a function of dissolved oxygen concentration to analyze metabolic adaptation to hypoxia. A drop in dissolved oxygen concentration from 50 mmHg to 0.42 mmHg led to a 2.3 fold decrease in intracellular ATP levels with an almost 70-fold increase in the ratio of NADH/NAD+. This suggests that re-oxidation of this co-factor becomes limiting in the absence of a terminal electron acceptor. Upon oxygen limitation genes involved in the reverse TCA cycle were upregulated and this upregulation was associated with a significant accumulation of succinate in the extracellular milieu. We confirmed that this succinate was produced by a reversal of the TCA cycle towards the non-oxidative direction with net CO2 incorporation by analysis of the isotopomers of secreted succinate after feeding stable isotope (13C) labeled precursors. This showed that the resulting succinate retained both carbons lost during oxidative operation of the TCA cycle. Metabolomic analyses of all glycolytic and TCA cycle intermediates from 13C-glucose fed cells under aerobic and anaerobic conditions showed a clear reversal of isotope labeling patterns accompanying the switch from normoxic to anoxic conditions. M. tuberculosis encodes three potential succinate-producing enzymes including a canonical fumarate reductase which was highly upregulated under hypoxia. Knockout of frd, however, failed to reduce succinate accumulation and gene expression studies revealed a compensatory upregulation of two homologous enzymes. These major realignments of central metabolism are consistent with a model of oxygen-induced stasis in which an energized membrane is maintained by coupling the reductive branch of the TCA cycle to succinate secretion. This fermentative process may offer unique targets for the treatment of latent tuberculosis
    corecore